MATHEMATICS METHODS

MAWA Semester 1 (Unit3) Examination 2016

Calculator-Assumed

Marking Key

Section Two: Calculator-assumed

(98 Marks)

Question 10		
Solution		
$\frac{dV}{dr} = 2\pi r^2$		
$\frac{\delta r}{r} \approx \frac{1}{2\pi r^2} \times \frac{\delta V}{r}$		
$=\frac{1}{3}\times\frac{3}{2\pi r^3}\times\delta V \qquad \qquad \text{OR} \qquad \qquad V=\frac{2}{3}\pi r^3$		
$= \frac{1}{3} \times \frac{\delta V}{V}$ $= \frac{1}{3} \times \frac{1.5}{100}$ $\delta V \approx 2\pi r^{2} \delta r$ $\frac{\delta V}{V} = \frac{2\pi r^{2}}{\frac{2}{3}\pi r^{3}} \delta r = 3\frac{\delta r}{r}$		
J 100		
$= 0.005 \times 100 = 0.5\% \qquad \qquad \therefore \ \frac{\delta r}{r} = \frac{0.015}{3} = 0.005 \times 100 = 0.100$	5%	
Marking key/mathematical behaviours	Marks	
states the correct volume	1	
uses incremental formula correctly		
writes the incremental formula as ratios		
 calculates the correct percentage change 	1	

Question 11(a)

Solution	у	1	2	3	
	P(Y = y)	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{6}$	
Marking key/mathematical behaviours					
calculates both probabilities correctly					

Question 11(b)(i)

Solution $\frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$	
Marking key/mathematical behaviours	Marks
calculates correct probability	1

Question 11(b)(ii)

Solution	
$\frac{1}{2}$	
2	
Manting the description of the second second	Marila
Marking key/mathematical behaviours	Marks
calculates correct probability	1

Question 11(b)(iii)

Solution $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$	
Marking key/mathematical behaviours	Marks
calculates correct probability	1

Question 11(b)(iv)

Solution $\frac{1}{3} \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{6} \times \frac{1}{6} = \frac{7}{18}$	
Marking key/mathematical behaviours	Marks
 indicates both faces being 1, 2 or 3 	1
calculates correct probability	1

Question 11(b)(v)

Solution	
Possible pairings are 13 or 31 or 22	
1 1 1 1 13	
$\frac{1}{3} \times \frac{1}{6} \times 2 + \frac{1}{2} \times \frac{1}{2} = \frac{13}{36}$	
5 0 2 2 50	
Marking kay/mathematical behavioura	Marks
Marking key/mathematical behaviours	IVIAI KS
 gives correct pairings including both possibilities for 1 and 3 	1, 1

Question 12(a)

Solution	
$\frac{dy}{dx} = -4axe^{x^2}$	
$0 = -4axe^{x^2}$	
x = 0	
when $x = 0$,	
$y = a - 2ae^0$	
y = -a	
stationary point at $(0, -a)$	
Marking key/mathematical behaviours	Marks
determines the derivative using the chain rule	1
equates to zero and solves	1
substitutes to determine <i>y</i> -coordinate	1

Question 12(b) Solution

$$\frac{d^2 y}{dx^2} = -4ax(2xe^{x^2}) - 4ae^{x^2}$$
$$\frac{d^2 y}{dx^2}\Big|_{x=0} = -4a$$

Since *a* is a positive constant the second derivative is negative.

It is a maximum

Markir	ng key/mathematical behaviours	Marks
•	determines the first and second parts of the second derivative using the product rule and chain rule	1,1
٠	determines the value of the second derivative when $x=0$	1
•	states the nature of the stationary point	1
1		

Question 13(a)

Solution	
$\frac{dy}{dx} = x\cos(x) + \sin(x)$	
Marking key/mathematical behaviours	Marks
correctly differentiates using the product rule	1,1

Question 13(b) Solution

$$\int \frac{dy}{dx} = \int x\cos(x) + \sin(x) dx$$
$$x\sin(x) = \int x\cos(x) dx + \int \sin(x) dx$$
$$x\cos(x) dx = x\sin(x) - \int \sin(x) dx$$
$$= x\sin(x) + \cos(x) + c$$

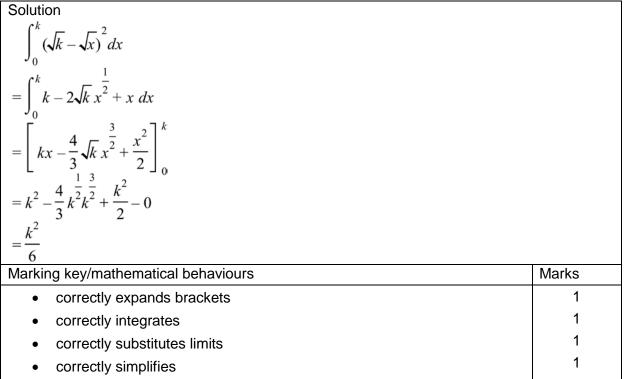
Marking key/mathematical behaviours	Marks
 integrates both sides of the derivative obtained in part (a) 	1
• replaces the LHS by y	1
rearranges correctly	1
 integrates sin(x) correctly 	1

Question 14(a)

Solution							
	x	4	6	8	9	11	14
	P(X=x)	0.16	0.32	0.16	0.16	0.16	0.04
Marking key/mathematical behaviours							Marks
calculates correct probability for each score							1, 1, 1, 1

Question 14(b)

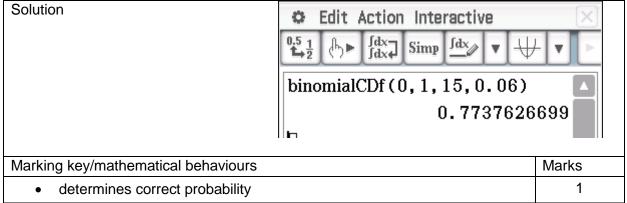
Solution)							
	у	-6	-4	-2	-1	1	4	
	P(Y=y)	0.16	0.32	0.16	0.16	0.16	0.04	
Marking key/mathematical behaviours Marks								
correctly completes distribution table								

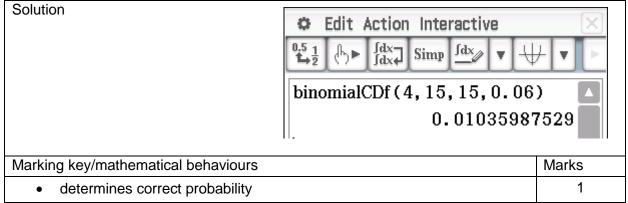

Question 14(c)

Solution						
The sum of $y \times P(Y = y) = -2.40$ cents						
For 50 games = -240 cents which is a loss of \$2.40						
Marking key/mathematical behaviours						
correctly calculates expected value	1					
multiplies by 50	1					
states that it is a loss	1					

Question 15

Solution	
$\frac{d}{dx} \int_{a}^{x} (f(t) + e^{t}) dt - 2 \int_{0}^{x} \frac{d}{dt} (f(t) + e^{2t}) dt = 2$	
$f(x) + e^{x} - 2(f(x) + e^{2x} - f(0) - 1) = 2$	
$-f(x) + e^x - 2e^{2x} + 4 = 2$	
$f(x) = 2 + e^x - 2e^{2x}$	
Marking key/mathematical behaviours	Manda
Marking Rey/Hathematical benaviours	Marks
applies the fundamental theorem to first integral	Marks 1
	Магкs 1 1
applies the fundamental theorem to first integral	1 1 1 1
 applies the fundamental theorem to first integral evaluates second integral 	Marks 1 1 1 1 1


Question 16


Question 17(a)

Solution	 Contractive Contrac	
Marking key/mathematical behaviours		Marks
determines correct probability		1

Question 17(b)

Question 17(c)

Question 17(d)

Solution P(at least 1)=1 – P(0)	Contraction Contraction Image: Simple field with the second					
	1-binomialPDf(0,15,0.06) 0.604708					
Marking key/mathematical behaviours		Marks				
 correctly uses complementary event 						
determines correct probability		1				

Question 17(e)

Solution Using P(at least 1)=1 – P(0) and testing n = 11, 12, 13. Largest sample is 12.	Constraints Edit Action Interactive $\begin{array}{c} \bullet & \bullet \\ $	× ∙▼				
OR using solve						
	7928					
	1-binomialPDf(0,12,0.06)					
	0.5240796852					
	1-binomialPDf(0,13,0.06)					
	0.5526349041					
solve(1-(0.94) ⁿ <0.55, n						
{n<12.90509069						
Marking key/mathematical behaviours	Marks					
 correctly uses complementary event and tests 11, 12, 13 						
determines correct sample size	1					

Question 18(a)

Solution	
In triangle, height = $2\cos\theta$ and base = $2\sin\theta$	
$V = area of trapezium \times 8$	
$=\frac{2\cos\theta}{2}\times(2+2+2\times2\sin\theta)\times8$	
$=\cos\theta\times(4+4\sin\theta)\times8$	
$= 32\cos\theta (1+\sin\theta)$	
Marking key/mathematical behaviours	Marks
 identifies height and base of triangle 	1
 uses suitable formula for area of base 	1
 simplifies and factorises result 	1

Marks

1

1

Question 18(b) Solution

solve
$$\left(10=32\cdot\cos(\theta)\cdot(1+\sin(\theta)), \theta, 0, 0, \frac{\pi}{2}\right)$$

{*θ*=1.412913449}

Marking key/mathematical behaviours								
				-				

- recognises to equate the volume equation to 10
- solves for theta

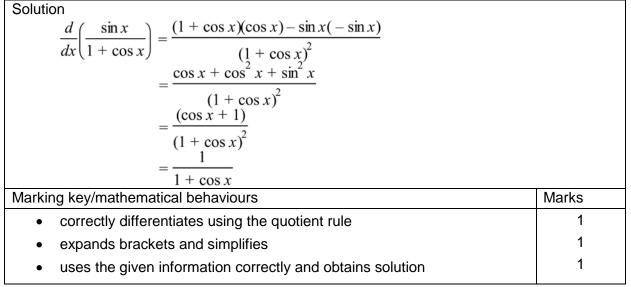
Question 18(c)

Solution

 $V'(\theta) = -32\sin\theta(1+\sin\theta) + 32\cos\theta\cos\theta$

For max: $V'(\theta) = 0 \Longrightarrow \theta = 0.52$

 $V''(0.52) = -83.14 \Longrightarrow$ maximum


 $V(0.52) = 41.57 \text{ m}^3$

Marking key/mathematical behaviours				
 determines the first part of the derivative using the product rule 	1			
 determines the second part of the derivative using the product rule 	1			
 equates derivative to zero and solves for theta 	1			
justifies maximum	1			
determines the volume	1			
states the capacity	1			

Question 19(a)

Solu	ition										
		x	0		$\frac{\pi}{6}$	$\frac{\pi}{3}$		$\frac{\pi}{2}$			
		У	0.5	().54	0.67		1			
	Rectangle $0 - \frac{\pi}{6}$ $\frac{\pi}{6} - \frac{\pi}{3}$ $\frac{\pi}{3} - \frac{\pi}{2}$								Т	otal	
	Lower rectangle area 0.				0	0.28 0.35		.35	0.89		
	Upper rectangle area		0.28		0	35	C).52	1	.15	
	Mean							1	.02		
Mark	Marking key/mathematical behaviours Marks										
correctly calculates the values of <i>y</i>							1,1				
 correctly calculates areas of upper and lower rectangles 								1			
correctly calculates totals									1		
correctly calculates mean								1			

Question 19(b)

Question 19(c)

Area = $\int_{0}^{\frac{\pi}{3}} f(x) dx = \left[\frac{\sin x}{1 + \cos x}\right]_{0}^{\frac{\pi}{3}}$ $= \frac{\frac{\sqrt{3}}{2}}{\frac{2}{3}}$ $= \frac{\sqrt{3}}{\frac{2}{3}}$ Marking key/mathematical behaviours Marks • correctly uses part (c) for the integral 1 • evaluates the integral 1	Solution						
$=\frac{\frac{\sqrt{3}}{2}}{\frac{2}{3}}$ $=\frac{\sqrt{3}}{\frac{2}{3}}$ Marking key/mathematical behaviours • correctly uses part (c) for the integral 1	<u>π</u>						
$=\frac{\frac{1}{2}}{\frac{3}{3}}$ Marking key/mathematical behaviours correctly uses part (c) for the integral 	Area = $\int_{0}^{3} f(x) dx = \left[\frac{\sin x}{1 + \cos x}\right]_{0}^{\frac{\pi}{3}}$						
$=\frac{\frac{1}{2}}{\frac{3}{3}}$ Marking key/mathematical behaviours correctly uses part (c) for the integral 	$\sqrt{3}$						
$=\frac{\frac{1}{2}}{\frac{3}{3}}$ Marking key/mathematical behaviours correctly uses part (c) for the integral 	$\frac{1}{2}$						
$=\frac{\frac{1}{2}}{\frac{3}{3}}$ Marking key/mathematical behaviours correctly uses part (c) for the integral 	$=\frac{2}{3}$						
correctly uses part (c) for the integral	<u>5</u>						
correctly uses part (c) for the integral	2						
correctly uses part (c) for the integral	$\sqrt{3}$						
correctly uses part (c) for the integral	$=\frac{1}{3}$						
	Marking key/mathematical behaviours	Marks					
evaluates the integral	correctly uses part (c) for the integral	1					
	evaluates the integral	1					
simplifies solution	simplifies solution	1					

Question 20(a)

Solution	
$solve(0=2 \cdot e^{2 \cdot t} - 10, t)$	
{t=0.8047189562}	
Marking key/mathematical behaviours	Marks
 Marking key/mathematical behaviours recognises that the particle is at rest when v = 0 	Marks 1

Question 20(b)

Solution	
$a(t) = \frac{dv}{dt}$	
$=4e^{2t}$	
a(0) = 4(1)	
$=4 \text{ m/s}^2$	
Marking key/mathematical behaviours	Marks
determines the derivative of the velocity function	1
• determines the acceleration when $t = 0$.	1

Question 20 (c) Solution

 $x(t) = \int (2e^{2t} - 10)dt$ = $e^{2t} - 10t + c$ $3 = e^{0} + c$ c = 2 $x(2) = e^{4} - 20 + 2$ = 36.60m

Marking key/mathematical behaviours	Marks
• integrates $v(t)$ to obtain general rule for $x(t)$	1
• uses the initial conditions to determine <i>c</i>	1
• calculates the displacement at <i>t</i> =2	1

Question 20 (d)

Solution	
$x(t) = \int_{0}^{4} \left 2e^{2t} - 10 \right dt$	
= 2948.05 m	
OR	
x(0) = 3	
x(0.80) = -1.05	
x(4) = 2942.96	
DIST = 4.05 + 1.05 + 2942.96	
= 2948.05 m	
Marking key/mathematical behaviours	Marks
 recognises the need for absolute value 	1
 identifies the limits as 0 and 4 	1
determines the distance travelled	1

Question 21 (a)

Solution	
Define $P(t)=1500 \cdot e^{0.07 \cdot t}$	
done	
P(3)	
1850.51709	
Marking key/mathematical behaviours	Marks
 writes the function for the population 	n 1
• determines the population when <i>t</i> =2	1

Question 21 (b)

Solution	
solve(P(t)=2000,t)	
{t=4.109743892}	
During 2014	
	N A - ulu
Marking key/mathematical behaviours	Mark
• determines the value of t when $P = 2000$	1

Question 21(c)

Solutio	n	
	P(6)	
	2282.942333	
	Define $Q(t)=P(6) \cdot e^{-0.05 \cdot t}$	
	done	
	solve(1500=Q(t),t)	
	{t=8.4}	
During	May 2024	
<u></u>		
Marking	g key/mathematical behaviours	Marks
•	determines the population at the start of 2016	1
•	states an equation for the new population	1
•	equates this new equation to 1500 and solves for t	1
•	states the month and year corresponding to this value of t	1

Question 22

Solution	
Height of triangle $OPR = ah^2 + bh$	
Area under curve from 0 to $h = \int_0^h ax^2 + bx dx = \left[\frac{ax^3}{3} + \frac{bx^2}{2}\right]_0^h = \frac{ah^3}{3} + \frac{bh}{2}$	$\frac{i^2}{2}$
Equation of line $OQ: \left. \frac{d}{dx} (ax^2 + bx) \right _{x=0} = b :$ equation of line OQ is $y = b$.	x
Area of triangle <i>OPR</i> : $\frac{h}{2}(ah^2 + bh) = \frac{ah^3}{2} + \frac{bh^2}{2}$	
Area of triangle OQR : $\frac{h}{2} \times bh = \frac{bh^2}{2}$	
Area of region A : $\frac{ah^3}{2} + \frac{bh^2}{2} - \left(\frac{ah^3}{3} + \frac{bh^2}{2}\right) = \frac{ah^3}{6}$	
Area of region B : $\frac{ah^3}{3} + \frac{bh^2}{2} - \frac{bh^2}{2} = \frac{ah^3}{3}$	
Ratio of region A to region B : $\frac{\frac{ah^3}{3}}{\frac{ah^3}{6}} = 1:2$	
Marking key/mathematical behaviours	Marks
• determines height of triangle <i>OPR</i> in terms of <i>h</i>	1
determines area under curve	1
determines equation of line OQ	1
• determines areas of triangles <i>OPR</i> and <i>OQR</i>	1
• determines area of region A and B	1
• calculates ratio of region A to region B	1

© MAWA, 2016

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or the marking guide until the agreed release date stipulated in the purchasing agreement/licence.

Published by The Mathematical Association of WA 12 Cobbler Place, MIRRABOOKA 6061